FACTORIZATION OF THE TENTH FERMAT NUMBER

RICHARD P. BRENT

Abstract

We describe the complete factorization of the tenth Fermat number F_{10} by the elliptic curve method (ECM). F_{10} is a product of four prime factors with $8,10,40$ and 252 decimal digits. The 40 -digit factor was found after about 140 Mflop-years of computation. We also discuss the complete factorization of other Fermat numbers by ECM, and summarize the factorizations of F_{5}, \ldots, F_{11}.

1. Introduction and historical summary

For a nonnegative integer n, the n-th Fermat number is $F_{n}=2^{2^{n}}+1$. It is known that F_{n} is prime for $0 \leq n \leq 4$, and composite for $5 \leq n \leq 23$. Also, for $n \geq 2$, the factors of F_{n} are of the form $k 2^{n+2}+1$. In 1732 Euler found that $641=5 \cdot 2^{7}+1$ is a factor of F_{5}, thus disproving Fermat's belief that all F_{n} are prime. No Fermat primes larger than F_{4} are known, and a probabilistic argument makes it plausible that only a finite number of F_{n} (perhaps only F_{0}, \ldots, F_{4}) are prime.

The complete factorization of the Fermat numbers F_{6}, F_{7}, \ldots has been a challenge since Euler's time. Because the F_{n} grow rapidly in size, a method which factors F_{n} may be inadequate for F_{n+1}. Historical details and references can be found in $[21,35,36,44,74]$, and some recent results are given in [17, 26, 27, 34].

In the following, p_{n} denotes a prime number with n decimal digits (not necessarily the same at each occurrence). Similarly, c_{n} denotes a composite number with n decimal digits.

Landry [41] factored $F_{6}=274177 \cdot p_{14}$ in 1880 , but significant further progress was only possible with the development of the digital computer and more efficient algorithms. In 1970, Morrison and Brillhart [55] factored

$$
F_{7}=59649589127497217 \cdot p_{22}
$$

by the continued fraction method. Then, in 1980, Brent and Pollard [18] factored

$$
F_{8}=1238926361552897 \cdot p_{62}
$$

by a modification of Pollard's "rho" method $[6,58]$. The larger factor p_{62} of F_{8} was first proved prime by Williams [18, §4] using the method of Williams and Judd [75].

If it had been invented earlier, the rho method could have been used to factor F_{7} (with a little more difficulty than F_{8}, see [18, Table 2]). Similarly, the multiplepolynomial quadratic sieve (MPQS) method [59, 70], which is currently the best

[^0]"general-purpose" method for composite numbers of up to about 100 decimal digits, could have been used to factor both F_{7} and F_{8}, but it was not available in 1980.

Logically, the next challenge after the factorization of F_{8} was the factorization of F_{9}. It was known that $F_{9}=2424833 \cdot c_{148}$. The 148 -digit composite number resisted attack by methods such as Pollard rho, Pollard $p \pm 1$, and the elliptic curve method (ECM), which would have found "small" factors. It was too large to factor by the continued fraction method or its successor, MPQS. The difficulty was finally overcome by the invention of the (special) number field sieve (SNFS), based on a new idea of Pollard [43, 61]. In 1990, Lenstra, Lenstra, Manasse and Pollard, with the assistance of many collaborators and approximately 700 workstations scattered around the world, completely factored F_{9} by SNFS [44, 45]. The factorization is

$$
F_{9}=2424833 \cdot 7455602825647884208337395736200454918783366342657 \cdot p_{99} .
$$

In $\S 8$ we show that it would have been possible (though more expensive) to complete the factorization of F_{9} by ECM.
F_{10} was the "most wanted" number in various lists of composite numbers published after the factorization of F_{9} (see, for example, the list in Update 2.9 of [21]). F_{10} was proved composite in 1952 by Robinson [64], using Pépin's test on the SWAC. A small factor, 45592577, was found by Selfridge [65] in 1953 (also on the SWAC). Another small factor, 6487031809, was found by Brillhart [20] in 1962 on an IBM 704. Brillhart later found that the cofactor was a 291-digit composite. Thus, it was known that $F_{10}=45592577 \cdot 6487031809 \cdot c_{291}$.

This paper describes the complete factorization of F_{10}. Using ECM we found a 40 -digit factor $p_{40}=4659775785220018543264560743076778192897$ on October 20, 1995. The 252 -digit cofactor $c_{291} / p_{40}=13043 \cdots 24577$ was proved to be prime using the method of Atkin and Morain [1]. Later, a more elementary proof was found, using Selfridge's "Cube Root Theorem" (see §9). Thus, the complete factorization is

$$
F_{10}=45592577 \cdot 6487031809 \cdot 4659775785220018543264560743076778192897 \cdot p_{252} .
$$

So far, this summary has been chronological, but now we backtrack, because F_{11} was completely factored in 1988, before the factorization of F_{9} and F_{10}. In fact,

$$
F_{11}=319489 \cdot 974849 \cdot 167988556341760475137 \cdot 3560841906445833920513 \cdot p_{564},
$$

where $p_{564}=17346 \cdots 34177$. The two 6 -digit factors were found by Cunningham [21, 29] in 1899, and remaining factors were found by the present author in May 1988.

The reason why F_{11} could be completely factored before F_{9} and F_{10} is that the difficulty of completely factoring numbers by ECM is determined mainly by the size of the second-largest prime factor of the number. The second-largest prime factor of F_{11} has 22 digits and is much easier to find by ECM than the 40 -digit factor of F_{10}.

A brief summary of the history of factorization of F_{5}, \ldots, F_{11} is given in Table 1. For a similar history of F_{12}, \ldots, F_{22}, see [25, p. 148].

In $\S \S 2-4$ we describe some variants of ECM and their performance, and in $\S 5$ we describe some implementations of ECM which were used in attempts to factor F_{10} and other composite numbers. Details of the factorization of F_{10} are given in $\S 6$. As details of the factorization of F_{11} have not been published, apart from two brief

Table 1. Complete factorization of $F_{n}, n=5, \ldots, 11$

n	Factorization	Method	Date	Comments
5	$p_{3} \cdot p_{7}$	Trial division	1732	Euler
6	$p_{6} \cdot p_{14}$	See [74]	1880	Landry
7	$p_{17} \cdot p_{22}$	CFRAC	1970	Morrison and Brillhart
8	$p_{16} \cdot p_{62}$	B-P rho	1980	Brent and Pollard $\left(p_{16}, p_{62}\right)$
		See [18, 75$]$	1980	Williams (primality of $\left.p_{62}\right)$
9	$p_{7} \cdot p_{49} \cdot p_{99}$	Trial division	1903	Western $\left(p_{7}\right)$
		SNFS	1990	Lenstra et al $\left(p_{49}, p_{99}\right)$
10	$p_{8} \cdot p_{10} \cdot p_{40} \cdot p_{252}$	Trial division	1953	Selfridge $\left(p_{8}\right)$
		Trial division	1962	Brillhart $\left(p_{10}\right)$
		ECM	1995	Brent $\left(p_{40}, p_{252}\right)$
11	$p_{6} \cdot p_{6}^{\prime} \cdot p_{21} \cdot p_{22} \cdot p_{564}$	Trial division	1899	Cunningham $\left(p_{6}, p_{6}^{\prime}\right)$
		ECM	1988	Brent $\left(p_{21}, p_{22}, p_{564}\right)$
		ECPP	1988	Morain (primality of $\left.p_{564}\right)$

announcements [9,11], we describe the computation in §7. Further examples of factorizations obtained by ECM are given in $\S 8$.

Rigorously proving primality of a number as large as the 564 -digit factor of F_{11} is a nontrivial task. In $\S 9$ we discuss primality proofs and "certificates" of primality for the factors of $F_{n}, n \leq 11$.

Attempts to factor Fermat numbers by ECM are continuing. For example, 27digit factors of F_{13} and F_{16} have recently been found [13, 17]. The smallest Fermat number which is not yet completely factored is F_{12}. It is known that F_{12} has at least seven prime factors, and

$$
F_{12}=114689 \cdot 26017793 \cdot 63766529 \cdot 190274191361 \cdot 1256132134125569 \cdot c_{1187}
$$

The prospects for further progress in factoring F_{12} are discussed in $\S 10$.
The reader who is interested in numerical results but not in details of the implementation and performance prediction of ECM can safely skip forward to $\S 6$.
1.1. Acknowledgements. Thanks are due to Hendrik Lenstra, Jr., for the ECM algorithm which made the factorization of F_{10} and F_{11} possible; and to Peter Montgomery and Hiromi Suyama for their practical improvements to ECM. John Pollard provided some of the key ideas with his " $p-1$ " and "rho" methods. John Brillhart, Richard Crandall, Wilfrid Keller, Donald Knuth, John Selfridge and Daniel Shanks provided historical information, references, and/or corrections to drafts of this paper. Bruce Dodson, Arjen Lenstra, Peter Montgomery, Robert Silverman and Sam Wagstaff, Jr. provided information about other attempts to factor F_{10}. François Morain proved the primality of the 564 -digit factor of F_{11}. An anonymous referee provided valuable comments which helped to improve the exposition. John Cannon provided access to the Magma package. Bob Gingold graciously volunteered spare computer cycles on a SparcCenter 2000. The ANU Supercomputer Facility provided computer time on Fujitsu VP100, VP2200/10, and VPP300 vector processors. The ANU-Fujitsu CAP Project provided access to a Fujitsu AP1000, and the ACSys Cooperative Research Centre provided access to eight DEC alphas.

2. Variants of ECM

The elliptic curve method (ECM) was discovered by H. W. Lenstra, Jr. [46] in 1985. Practical refinements were suggested by various authors [8, 23, 50, 51, 72]. We refer to $[45,52,62,71]$ for a general description of ECM, and to [24, 69] for relevant background.

Suppose we attempt to find a factor of a composite number N, which we can assume not to be a perfect power [2], [44, §2.5]. Let p be the smallest prime factor of N. In practice it is desirable to remove small factors (up to say 10^{4}) by trial division before applying ECM, but we only need assume $p>3$.

We describe the algorithms in terms of operations in the finite field $K=G F(p)=$ $\mathbf{Z} / p \mathbf{Z}$. In practice, when p is unknown, we usually work modulo N and occasionally perform GCD computations which will detect any nontrivial factor of N (probably p, though possibly a different factor of N). Because there is a natural ring homomorphism from $\mathbf{Z} / N \mathbf{Z}$ to $\mathbf{Z} / p \mathbf{Z}$, working modulo N can be regarded as using a redundant representation for elements of $\mathbf{Z} / p \mathbf{Z}$.

Pollard's $p-1$ method [57] uses the multiplicative group of the finite field K. ECM is analogous, but uses a group G defined on an elliptic curve. Although this makes group operations more expensive, a crucial advantage of ECM is that several different groups can be tried in an attempt to find a factor.

There is no loss of generality in assuming that the elliptic curve is given in Weierstrass normal form

$$
\begin{equation*}
y^{2}=x^{3}+a x+b \tag{1}
\end{equation*}
$$

where a and b are constants such that

$$
\begin{equation*}
4 a^{3}+27 b^{2} \neq 0 \tag{2}
\end{equation*}
$$

in $K . G$ consists of the set of points $(x, y) \in K \times K$ which lie on the curve, and a "point at infinity" \mathcal{O}. A commutative and associative group operation is defined in a standard way [69]. In accordance with the usual convention we write the group operation additively. The zero element of G is \mathcal{O}.

Let $g=|G|$ be the order of G. We have $g=p+1-t$, where t satisfies Hasse's inequality $t^{2}<4 p$. The number of curves with given t can be expressed in terms of the Kronecker class number of $t^{2}-4 p$ (see [46]).

In practice, to avoid computation of square roots, we select a pseudo-random parameter a and initial point (x_{1}, y_{1}) on the curve, and then compute b from (1). If desired, the condition (2) can be checked by a GCD computation.
2.1. Other models. We use the words "model" and "form" interchangeably. The Weierstrass form (1) is not the most efficient for computations involving group operations. With (1) we have to perform divisions modulo N. These are expensive because they involve an extended GCD computation. To avoid divisions modulo N, we can replace (x, y) by $(x / z, y / z)$ in (1) to get a homogeneous Weierstrass equation

$$
\begin{equation*}
y^{2} z=x^{3}+a x z^{2}+b z^{3} . \tag{3}
\end{equation*}
$$

The points (x, y, z) satisfying (3) are thought of as representatives of elements of $P^{2}(K)$, the projective plane over K, i.e. the points (x, y, z) and $(c x, c y, c z)$ are regarded as equivalent if $c \neq 0 \bmod p$. We write $(x: y: z)$ for the equivalence class containing (x, y, z). The additive zero element \mathcal{O} is $(0: 1: 0)$ and we can test for it by computing $\operatorname{GCD}(N, z)$.

Montgomery [50] suggested using the form

$$
\begin{equation*}
b y^{2}=x^{3}+a x^{2}+x \tag{4}
\end{equation*}
$$

or, replacing (x, y) by $(x / z, y / z)$ as above,

$$
\begin{equation*}
b y^{2} z=x^{3}+a x^{2} z+x z^{2} . \tag{5}
\end{equation*}
$$

Corresponding to the condition (2) we now have the condition $b\left(a^{2}-4\right) \neq 0$.
Not every elliptic curve can be expressed in the form (4) or (5) by rational transformations. However, by varying a in (4) or (5), we get a sufficiently large class of pseudo-random curves. The exact value of b in (4) or (5) is not important, but it is significant whether b is a quadratic residue $(\bmod p)$ or not. In general we get two different groups, of order $p+1 \pm t$, by varying b.

Assume that we start with a point $P_{1}=\left(x_{1}: y_{1}: z_{1}\right)$ on (5). For positive integer n, we write $P_{n}=n P_{1}$ and suppose $P_{n}=\left(x_{n}: y_{n}: z_{n}\right)$. Montgomery [50, §10] shows in a direct way that, for positive integer m, n such that $P_{m} \neq \pm P_{n}$, we have an addition formula

$$
\begin{equation*}
\frac{x_{m+n}}{z_{m+n}}=\frac{z_{|m-n|}\left(x_{m} x_{n}-z_{m} z_{n}\right)^{2}}{x_{|m-n|}\left(x_{m} z_{n}-z_{m} x_{n}\right)^{2}} \tag{6}
\end{equation*}
$$

and a duplication formula

$$
\begin{equation*}
\frac{x_{2 n}}{z_{2 n}}=\frac{\left(x_{n}^{2}-z_{n}^{2}\right)^{2}}{4 x_{n} z_{n}\left(x_{n}^{2}+a x_{n} z_{n}+z_{n}^{2}\right)} . \tag{7}
\end{equation*}
$$

An alternative derivation of (6)-(7), using addition and duplication formulas for the Jacobian elliptic function $s n^{2}(u)$, is given in [23, p. 422]. This derivation makes the reason for associativity clear.

Note that (6)-(7) do not specify the y-coordinate. Fortunately, it turns out that the y-coordinate is not required for ECM, and we can save work by not computing it. In this case we write $P_{n}=\left(x_{n}:: z_{n}\right)$. Since $(x: y: z)+(x:-y: z)=\mathcal{O}$, ignoring y amounts to identifying P and $-P$.

Montgomery [50, $\S 10]$ shows how (6) and (7) can be implemented to perform an addition and a duplication with 11 multiplications $(\bmod N)$.
2.2. The first phase. The first phase of ECM computes P_{r} for a large integer r. Usually r is the product of all prime powers less than some bound B_{1}. There is no need to compute r explicitly. By the prime number theorem, $\log r \sim B_{1}$ as $B_{1} \rightarrow \infty$. (Here and below, "log" without a subscript denotes the natural logarithm.)

From (6)-(7), we can compute the x - and z-components of ($P_{1}, P_{2 n}, P_{2 n+1}$) or $\left(P_{1}, P_{2 n+1}, P_{2 n+2}\right)$ from the x - and z-components of (P_{1}, P_{n}, P_{n+1}). Thus, from the binary representation of the prime factors of r, we can compute ($x_{r}:: z_{r}$) in $O(\log r)=O\left(B_{1}\right)$ operations, where each operation is an addition or multiplication $\bmod N$. In fact, $\left(x_{r}:: z_{r}\right)$ can be computed with about $K_{1} B_{1}$ multiplications $\bmod N$ and a comparable number of additions $\bmod N$, where $K_{1}=11 / \log 2$. If $z_{1}=1$, then K_{1} can be reduced to $10 / \log 2$. For details, see Montgomery [50, §10].

At the end of the first phase of ECM we check if $P_{r}=\mathcal{O}$ by computing $\operatorname{GCD}\left(z_{r}, N\right)$ (note the comment above on ring homomorphisms). If the GCD is nontrivial then the first phase of ECM has been successful in finding a factor of N. Otherwise we may continue with a second phase (see §3) before trying again with a different pseudo-random group G.
2.3. The starting point. An advantage of using (4) or (5) over (1) or (3) is that the group order is always a multiple of four (Suyama [72]; see [50, p. 262]). Also, it is possible to ensure that the group order is divisible by 8,12 or 16 . For example, if $\sigma \notin\{0, \pm 1,5\}$,

$$
\begin{align*}
u / v & =\left(\sigma^{2}-5\right) /(4 \sigma) \\
x_{1} / z_{1} & =u^{3} / v^{3} \tag{8}\\
a+2 & =(v-u)^{3}(3 u+v) /\left(4 u^{3} v\right)
\end{align*}
$$

then the curve (5) has group order divisible by 12. As a starting point we can take ($x_{1}:: z_{1}$).

3. The second phase

Montgomery and others $[8,50,51,54]$ have described several ways to improve Lenstra's original ECM algorithm by the addition of a second phase, analogous to phase 2 of the Pollard $p-1$ method. We outline some variations which we have implemented. Phase 1 is the same in all cases, as described in $\S 2.2$.

We assume that the form (5) is used with starting point $P_{1}=\left(x_{1}:: z_{1}\right)$ given by (8). Bounds $B_{2} \geq B_{1}>0$ are chosen in advance. For example, if our aim is to find factors of up to about 35 decimal digits, we might choose $B_{1}=10^{6}$ and $B_{2}=100 B_{1}$ (see $\S 4.4$). In the following we assume that $B_{2} \gg B_{1}$, so $B_{2}-B_{1} \simeq B_{2}$. We define $B_{3}=\pi\left(B_{2}\right)-\pi\left(B_{1}\right) \simeq B_{2} / \log B_{2}$. The time required for phase 2 is approximately proportional to B_{3}.

Suppose the group order g has prime factors $g_{1} \geq g_{2} \geq \cdots$. Phase 1 will usually be successful if $g_{1} \leq B_{1}$. We say "usually" because it is possible that a prime factor of g occurs with higher multiplicity in g than in r, but this is unlikely and can be neglected when considering the average behaviour of ECM. Phase 2 is designed to be successful if $g_{2} \leq B_{1}<g_{1} \leq B_{2}$. To a good approximation, phase 1 is successful if all prime factors of g are at most B_{1}, while phase 2 is successful if all but one prime factors of g are at most B_{1}, and that one factor is at most B_{2}.

In $\S \S 3.1-3.4$ we describe several different versions of phase 2 (also called "continuations" because they continue after phase 1). Some versions are difficult to implement using only the formulae (6)-(7). For this reason, some programs use Montgomery's form (5) for phase 1 and convert back to Weierstrass form (1) or (3) for phase 2. For details of the transformation see [4, §4.2].
3.1. The standard continuation. Suppose phase 1 has computed $Q=P_{r}$ such that $Q \neq \mathcal{O}$. The "standard continuation" computes $s Q=\left(x_{r s}:: z_{r s}\right)$ for each prime $s, B_{1}<s \leq B_{2}$, and is successful if $\operatorname{GCD}\left(z_{r s}, N\right)$ is nontrivial for some such s. We can amortize the cost of a GCD by following a suggestion of Pollard [58]. We compute

$$
\operatorname{GCD}\left(\prod_{s} z_{r s} \bmod N, N\right)
$$

where the product $\bmod N$ is taken over a sufficiently large set of s, and backtrack if the GCD is composite. This reduces the average cost of a GCD essentially to that of a multiplication $\bmod N$.

There is no advantage in using phase 2 if $s Q$ is computed using the standard binary method, which takes $O(\log s)$ group operations. It is much more efficient to precompute a small table of points $2 d Q$, where $0<d \leq D$ say. Then, given $s_{1} Q$
for some odd s_{1}, we can compute $\min \left(s_{1}+2 D, s_{2}\right) Q$, where s_{2} is the next prime, using only one group operation. Thus, we can compute $s Q$ for a sequence of values of s including all primes in (B_{1}, B_{2}] and possibly including some composites (if $2 D$ is smaller than the maximal gap between successive primes in the interval), with one group operation per point. Provided D is at least of order $\log B_{2}$, the work for phase 2 is reduced from $O\left(B_{2}\right)$ group operations to $O\left(B_{3}\right)$ group operations.

The standard continuation can be implemented efficiently in $O\left(\log N \log B_{2}\right)$ bits of storage. It is not necessary to store a table of primes up to B_{2} as the odd primes can be generated by sieving in blocks as required. Even storing the primes to $\sqrt{B_{2}}$ is unnecessary, because we can sieve using odd integers $3,5,7,9, \ldots$. The sieving does not need to be very efficient, because most of the time is spent on multipleprecision arithmetic to perform group operations. Sieving could be replaced by a fast pseudo-prime test, because it does not hurt ECM if a few composites are included in the numbers generated and treated as primes.
3.2. The improved standard continuation. The standard continuation can be improved-Montgomery's form (5) can be used throughout, and most group operations can be replaced by a small number of multiplications $\bmod N$. The key idea [50, §4] is that we can test if $\operatorname{GCD}\left(z_{r s}, N\right)$ is nontrivial without computing $s Q$. We precompute $2 d Q$ for $0<d \leq D$ as above, using $O(D)$ group operations. We can then compute $m Q$ for $m=1,2 D+1,4 D+1, \ldots$, using one application of (6) for each point after the first. The points $m Q$ are updated as necessary, so only require $O(\log N)$ storage. Suppose $s=m+n$ is a prime, where n is even and $0<n \leq 2 D$. Now $s Q=\mathcal{O}$ implies $m Q= \pm n Q$. Since $m Q=\left(x_{m r}:: z_{m r}\right)$ and $\pm n Q=\left(x_{n r}:: z_{n r}\right)$ are known, it is sufficient to test if $\operatorname{GCD}\left(x_{m r} z_{n r}-x_{n r} z_{m r}, N\right)$ is nontrivial. We can avoid most of the GCDs as in $\S 3.1$, by computing $\Pi\left(x_{m r} z_{n r}-x_{n r} z_{m r}\right) \bmod N$, where the product is taken over several m and n. Thus, the work is reduced to about three multiplications $\bmod N$ per prime s. It can be reduced to two multiplications $\bmod N$ by ensuring that $z_{n r}=1$, which involves a precomputation of order D. A reduction to one multiplication $\bmod N$ is possible, at the cost of one extended GCD computation per point $m Q$. This is worthwhile if D is sufficiently large. Another reduction by a factor of almost two can be achieved by rational preconditioning [56]. For future reference, we assume K_{2} multiplications mod N per comparison of points, where $1 / 2 \leq K_{2} \leq 3$, the exact value of K_{2} depending on the implementation.

There is an analogy with Shanks's baby and giant steps [66, p. 419]: giant steps involve a group operation (about 11 multiplications) and possibly an extended GCD computation, but baby steps avoid the group operation and involve only $K_{2} \leq 3$ multiplications.

To decide on the table size D, note that setting up the table and computation of the points $m Q$ requires about $D+B_{2} /(2 D)$ applications of (6). If storage is not a consideration, the optimal D is approximately $\sqrt{B_{2} / 2}$. However, provided $\sqrt{B_{2}}>D \gg \log B_{2}$, the setting up cost is $o\left(B_{3}\right)$, and the overall cost of phase 2 is about $K_{2} B_{3}$ multiplications mod N. Thus, storage requirements for an efficient implementation of the improved standard continuation are not much greater than for the standard continuation.
3.3. The birthday paradox continuation. The "birthday paradox" continuation is an alternative to the (improved) standard continuation. It was suggested
in [8] and has been implemented in several of our programs (see §5) and in the programs of A. Lenstra et al. [4, 31, 45].

There are several variations on the birthday paradox idea. We describe a version which is easy to implement and whose efficiency is comparable to that of the improved standard continuation. Following a suggestion of Suyama, we choose a positive integer parameter e. The choice of e is considered below. For the moment the reader can suppose that $e=1$.

Suppose, as in $\S 3.1$, that Q is the output of phase 1. Select a table size T. If storage permits, T should be about $\sqrt{B_{3}}$; otherwise choose T as large as storage constraints allow (for reasonable efficiency we only need $T \gg e \log B_{3}$). Generate T pseudo-random multiples of Q, say $Q_{j}=q_{j}^{e} Q$ for $j=1, \ldots, T$. There is some advantage in choosing the q_{j} to be linear in j, i.e., $q_{j}=k_{0}+k_{1} j$ for some pseudorandom k_{0}, k_{1} (not too small). In this case the Q_{j} can be computed by a "finite difference" scheme with $O(e T)$ group operations because the e-th differences of the multipliers q_{j}^{e} are constant. Another possibility is to choose q_{j} to be a product of small primes. For example, in our programs C-D (see $\S 5$) we use a set of $2\left\lceil\log _{2} T\right\rceil$ odd primes and take q_{j} to be a product of $\left\lceil\log _{2} T\right\rceil$ odd primes from this set, the choice depending on the bits in the binary representation of $j-1$. This scheme requires $O(e T \log \log T)$ group operations and can be vectorized.

After generating the T points Q_{j}, we generate $\left\lfloor B_{3} / T\right\rfloor$ further pseudo-random points, say $\bar{Q}_{k}=\bar{q}_{k}^{e} Q$, where the \bar{q}_{k} are distinct from the q_{j}. The choice $\bar{q}_{k}=2^{k}$ is satisfactory. For each such point \bar{Q}_{k}, we check if $\bar{Q}_{k}= \pm Q_{j}$ for $j=1, \ldots, T$. This can be done with $K_{2} T$ multiplications $\bmod N$, as in the description of the improved standard continuation in $\S 3.2$. If T is sufficiently large, it is worthwhile to make the z-coordinates of Q_{j} and \bar{Q}_{k} unity by extended GCD computations, which reduces K_{2} to 1 . (To reduce the number of extended GCDs, we can generate the points \bar{Q}_{k} in batches and reduce their z-coordinates to a common value before performing one extended GCD.) Note that the points \bar{Q}_{k} do not need to be stored as only one (or one batch) is needed at a time. We only need store $O(T)$ points.

It is easy to see that most of the computation for the birthday paradox version of phase 2 amounts to the evaluation $(\bmod N)$ of a polynomial of degree T at $\left\lfloor B_{3} / T\right\rfloor$ points. Thus, certain fast polynomial evaluation schemes can be used $[8,38,56]$.

Both the improved standard continuation and the birthday paradox continuation make approximately B_{3} comparisons of points which are multiples of Q, say $n Q$ and $n^{\prime} Q$, and usually succeed if $g_{2} \leq B_{1}$ and $n \pm n^{\prime}$ is a nontrivial multiple of g_{1}. The improved standard continuation ensures that $\left|n-n^{\prime}\right|$ is prime, but the birthday paradox continuation merely takes pseudo-random n and n^{\prime}. Since g_{1} is prime, it would appear that the improved standard continuation is more efficient. However, taking the parameter $e>1$ may compensate for this. The number of solutions of

$$
\begin{equation*}
x^{2 e}=1 \bmod g_{1} \tag{9}
\end{equation*}
$$

is $\operatorname{GCD}\left(2 e, g_{1}-1\right)$. Thus, by choosing e as a product of small primes, we increase the expected number of solutions of (9). In fact, if $2 e=2^{e_{1}} 3^{e_{2}} 5^{e_{3}} \cdots$, it can be shown that the expected value of $\operatorname{GCD}(2 e, q-1)$ for a random large prime q is $\left(e_{1}+1\right)\left(e_{2}+1\right)\left(e_{3}+1\right) \cdots$. Since g_{1} is the largest prime factor of the group order g, it is reasonable to assume similar behaviour for $\operatorname{GCD}\left(2 e, g_{1}-1\right)$. The number of solutions of equation (9) is relevant because we expect phase 2 to succeed if $g_{2} \leq B_{1}$ and $\left(q_{j} / \bar{q}_{k}\right)^{2 e}=1 \bmod g_{1}$.

The parameter e should not be chosen too large, because the cost of generating the points Q_{j} and \bar{Q}_{k} is proportional to e. To ensure that this cost is negligible, we need $e \ll T$. In practice, a reasonable strategy is to choose the largest e from the set $\{1,2,3,6,12,24,30\}$ subject to the constraint $32 e<T$.
3.4. The FFT continuation. Pollard suggested the use of the FFT to speed up phase 2 for his $p-1$ method, and Montgomery [51] has successfully implemented the analogous phase 2 for ECM. The FFT continuation may be regarded as an efficient generalisation of both the improved standard continuation and the birthday paradox continuation. We have not implemented it because of its complexity and large storage requirements.
3.5. Comparison of continuations. It is natural to ask which of the above versions of phase 2 is best. We initially implemented the birthday paradox continuation because of its simplicity. Also, the asymptotic analysis in [8, §7] indicated that it would be faster than the (improved) standard continuation. However, this was on the assumption that an asymptotically fast polynomial evaluation scheme would be used. In practice, the polynomial degrees are unlikely to be large enough for such a scheme to be significantly faster than standard polynomial evaluation. In our most recent implementation of ECM [13, Program G] we have used the improved standard continuation because of its slightly lower storage requirements and better (predicted) performance for factors of up to 40 decimal digits. If storage requirements and program complexity are not major considerations, then the FFT continuation is probably the best.

4. Performance of ECM

In order to predict the performance of ECM, we need some results on the distribution of prime factors of random integers. These results and references to earlier work may be found in [39, 73].
4.1. Prime factors of random integers. Let $n_{1}(N) \geq n_{2}(N) \geq \ldots$ be the prime factors of a positive integer N. The $n_{j}(N)$ are not necessarily distinct. For convenience we take $n_{j}(N)=1$ if N has less than j prime factors.

For $k \geq 1$, suppose that $1 \geq \alpha_{1} \geq \ldots \geq \alpha_{k} \geq 0$. Following Vershik [73], we define $\Phi_{k}=\Phi_{k}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ by

$$
\Phi_{k}=\lim _{M \rightarrow \infty} \frac{\#\left\{N: 1 \leq N \leq M, n_{j}(N) \leq N^{\alpha_{\nu}} \text { for } j=1, \ldots, k\right\}}{M} .
$$

Informally, $\Phi_{k}\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is the probability that a large random integer N has its j-th largest prime factor at most $N^{\alpha_{3}}$, for $j=1, \ldots, k$. The cases $k=1$ and $k=2$ are relevant to ECM (see $\S \S 4.2-4.4$). It is convenient to define $\Phi_{1}\left(\alpha_{1}\right)=1$ if $\alpha_{1}>1$, and $\Phi_{1}\left(\alpha_{1}\right)=0$ if $\alpha_{1}<0$. Vershik [73, Theorem 1] shows that

$$
\begin{equation*}
\Phi_{k}=\int_{0}^{\alpha_{k}} \int_{\theta_{k}}^{\alpha_{k-1}} \cdots \int_{\theta_{2}}^{\alpha_{1}} \Phi_{1}\left(\frac{\theta_{k}}{1-\theta_{1}-\cdots-\theta_{k}}\right) \frac{d \theta_{1} \ldots d \theta_{k-1} d \theta_{k}}{\theta_{1} \ldots \theta_{k-1} \theta_{k}} \tag{10}
\end{equation*}
$$

Knuth and Trabb Pardo [39] observe an interesting connection with the distribution of cycle lengths in a random permutation $[33,67]$. In fact, the distribution of the number of digits of the j-th largest prime factors of n-digit random integers is asymptotically the same as the distribution of lengths of the j-th longest cycles in random permutations of n objects.

We define

$$
\begin{align*}
\rho(\alpha) & =\Phi_{1}(1 / \alpha) \text { for } \alpha>0 \\
\rho_{2}(\alpha) & =\Phi_{2}(1,1 / \alpha) \text { for } \alpha \geq 1 \tag{11}\\
\mu(\alpha, \beta) & =\Phi_{2}(\beta / \alpha, 1 / \alpha) \text { for } 1 \leq \beta \leq \alpha
\end{align*}
$$

Informally, $\rho(\alpha)$ is the probability that $n_{1}^{\alpha} \leq N, \rho_{2}(\alpha)$ is the probability that $n_{2}^{\alpha} \leq N$, and $\mu(\alpha, \beta)$ is the probability that both $n_{2}^{\alpha} \leq N$ and $n_{1}^{\alpha} \leq N^{\beta}$, for a large random integer N with largest prime factor n_{1} and second-largest prime factor n_{2}. Note that $\rho(\alpha)=\mu(\alpha, 1)$ and $\rho_{2}(\alpha)=\mu(\alpha, \alpha)$.

The function ρ is usually called Dickman's function after Dickman [30], though some authors refer to Φ_{1} as Dickman's function, and Vershik [73] calls $\varphi_{1}=\Phi_{1}^{\prime}$ the Dickman-Goncharov function.

It is known (see [8]) that ρ satisfies a differential-difference equation

$$
\begin{equation*}
\alpha \rho^{\prime}(\alpha)+\rho(\alpha-1)=0 \tag{12}
\end{equation*}
$$

for $\alpha \geq 1$. Thus, $\rho(\alpha)$ may be computed by numerical integration from

$$
\begin{equation*}
\rho(\alpha)=\frac{1}{\alpha} \int_{\alpha-1}^{\alpha} \rho(t) d t \tag{13}
\end{equation*}
$$

for $\alpha>1$. The function μ may be computed from [8, eqn. (3.3)]

$$
\begin{equation*}
\mu(\alpha, \beta)=\rho(\alpha)+\int_{\alpha-\beta}^{\alpha-1} \frac{\rho(t)}{\alpha-t} d t \tag{14}
\end{equation*}
$$

for $1 \leq \beta \leq \alpha$. The formula for μ given in [71, p. 447] is incorrect, as can be seen by considering the limit as $\beta \rightarrow 1+$.

The results (12)-(14) follow from Vershik's general result (10), although it is possible to derive them more directly, as in $[8,38,39]$.

Sharp asymptotic results for ρ are given by de Bruijn [22, 48], and an asymptotic result for μ is stated in [8]. To predict the performance of phase 1 of ECM it is enough to know that

$$
\begin{equation*}
\frac{\rho(\alpha-1)}{\rho(\alpha)} \sim-\log \rho(\alpha) \sim \alpha \log \alpha \tag{15}
\end{equation*}
$$

as $\alpha \rightarrow \infty$.
4.2. Heuristic analysis of phase 1. We first give a simple, heuristic explanation of why phase 1 of ECM works. Assume that, so far as its largest prime factor g_{1} is concerned, the group order g behaves like a random integer near p. This is not quite correct, but is an accurate enough approximation to obtain asymptotic results. In $\S 4.4$ we take known divisors of g into account.

Let $\alpha=\log p / \log B_{1}$, so $B_{1}=p^{1 / \alpha}$. The probability that one curve succeeds in finding the factor p is close to the probability that $g_{1} \leq B_{1}$, and can be approximated by $\rho(\alpha)$. Thus, the expected number of curves for success is $C_{1}=1 / \rho(\alpha)$. As each curve requires about $K_{1} B_{1}=K_{1} p^{1 / \alpha}$ multiplications $(\bmod N)$, the expected number of multiplications $(\bmod N)$ is

$$
\begin{equation*}
W(\alpha)=K_{1} p^{1 / \alpha} / \rho(\alpha) \tag{16}
\end{equation*}
$$

Differentiating with respect to α, we see that the minimum $W(\alpha)$ occurs when $\log p=-\alpha^{2} \rho^{\prime}(\alpha) / \rho(\alpha)$. Using (12) and (15), we obtain asymptotic results for the
optimal parameters:

$$
\begin{align*}
\log p & =\frac{\alpha \rho(\alpha-1)}{\rho(\alpha)} \sim \alpha^{2} \log \alpha \tag{17}\\
\log B_{1} & =\frac{\rho(\alpha-1)}{\rho(\alpha)} \sim \alpha \log \alpha \tag{18}\\
\log C_{1} & =-\log \rho(\alpha) \sim \alpha \log \alpha \tag{19}\\
\log W & =\log K_{1}-\frac{d}{d \alpha}(\alpha \log \rho(\alpha)) \sim 2 \alpha \log \alpha \tag{20}\\
\log \left(B_{1} / C_{1}\right) & =-\alpha^{2} \frac{d}{d \alpha}\left(\frac{\log \rho(\alpha)}{\alpha}\right) \sim \alpha . \tag{21}
\end{align*}
$$

The result (21) is more delicate than the other asymptotic results because it involves cancellation of the terms of order $\alpha \log \alpha$ in (18) and (19).

From (17) and (20) we obtain

$$
\begin{equation*}
\log W \sim \sqrt{2 \log p \log \log p} \tag{22}
\end{equation*}
$$

as $p \rightarrow \infty$. Thus, $W=O\left(p^{\epsilon}\right)$ for any $\epsilon>0$.
4.3. Lenstra's analysis of phase 1. Modulo an unproved but plausible assumption regarding the distribution of prime factors of random integers in "short" intervals, Lenstra [46] has made the argument leading to (22) rigorous. He shows that phase 1 of ECM, when applied to a composite integer N with smallest prime factor p, will find p in an expected number

$$
\begin{equation*}
W_{1}(p)=\exp (\sqrt{(2+o(1)) \log p \log \log p}) \tag{23}
\end{equation*}
$$

of multiplications $(\bmod N)$, where the " $o(1) "$ term tends to zero as $p \rightarrow \infty$. The expected running time is

$$
T_{1}(p, N)=M(N) W_{1}(p)
$$

where $M(N)$ is the time required to multiply numbers modulo N.
The factor $M(N)$ is important because we are interested in Fermat numbers $N=F_{n}=2^{2^{n}}+1$ which may be very large. In practice, ECM is only feasible on F_{n} for moderate n : the limit is about the same as the limit of feasibility of Pépin's test (currently $n \leq 22$, see [27]).
4.4. Heuristic analysis of phase 2. Lenstra's result (23) applies only to phase 1 and assumes that the Weierstrass form is used. To predict the improvement derived from phase 2 and the use of Montgomery's form, we have to use heuristic arguments. We assume that the group order g behaves (so far as the distribution of its largest two prime factors are concerned) like a random integer near p / d, where d takes account of known small divisors of g. If Montgomery's form is used with the curve chosen as in $\S 2.3$, then $d=12$.

If ECM is used with parameters B_{1} and B_{2}, and the (improved) standard continuation is applied, then we expect a factor to be found if $g_{2} \leq B_{1}$ and $g_{1} \leq B_{2}$. If $\alpha=\log (p / d) / \log B_{1}$ and $\beta=\log B_{2} / \log B_{1}$, then (by our heuristic assumption) the probability that this occurs for any one curve is $\mu(\alpha, \beta)$. Thus, the expected number of curves required by ECM is $C(\alpha, \beta)=1 / \mu(\alpha, \beta)$, and (assuming that μ is small) the probability of success after at most t curves is

$$
\begin{equation*}
1-(1-\mu(\alpha, \beta))^{t} \simeq 1-\exp (-t / C) \tag{24}
\end{equation*}
$$

If the birthday paradox continuation is used, the performance depends on the exponent e, and it is possible for phase 2 to succeed with $g_{1}>B_{2}$. From (10), the probability of success for one curve is approximately

$$
\frac{1}{\phi(2 e)} \sum \int_{0}^{1 / \alpha} \int_{\psi}^{1-\psi}\left(1-\exp \left(-\gamma B_{3}(d / p)^{\theta}\right)\right) \Phi_{1}\left(\frac{\psi}{1-\theta-\psi}\right) \frac{d \theta d \psi}{\theta \psi}
$$

where the sum is over the $\phi(2 e)$ possible values of $g_{1} \bmod 2 e, \gamma$ ranges over the corresponding values of $\operatorname{GCD}\left(2 e, g_{1}-1\right)$, and $\alpha=\log (p / d) / \log B_{1}>2$. Assuming close to the optimal choice of parameters for factors of 30 to 40 decimal digits, numerical integration indicates that the expected cost of the birthday paradox continuation (without fast polynomial evaluation) is 15% to 20% more than for the (improved) standard continuation if $e=6$, and 9% to 14% more if $e=12$. Because the analysis is simpler, in the following we assume the improved standard continuation.

To choose optimal parameters, we note that the time to perform both phases on one curve is proportional to $K_{1} B_{1}+K_{2} B_{3}$, provided overheads such as table initialization are negligible. The constants K_{1} and K_{2} depend on details of the implementation (see $\S 3$).

If we knew p in advance, we could choose B_{1} and B_{2} to minimize the expected run time, which is proportional to the expected number of multiplications $\bmod N$:

$$
W=\left(K_{1} B_{1}+K_{2} B_{3}\right) / \mu(\alpha, \beta) .
$$

Recall that α and β are functions of B_{1} and B_{2}, so this is a simple problem of minimization in two variables. Suppose that the minimum is $W_{\text {opt }}$. Tables of optimal parameters are given in $[4,8,45,51,71]$, with each paper making slightly different assumptions. In Table 2 we give a small table of $\log _{10} W_{\text {opt }}$ for factors of D decimal digits. We assume that $K_{1}=11 / \log 2, K_{2}=1$, and $\log _{10} p \simeq D-0.5$. Some computed values of $\tau(p)$ are also shown in Table 2, where

$$
\tau(p)=\frac{\left(\log W_{o p t}\right)^{2}}{\log p \log \log p}
$$

so

$$
W_{o p t}=\exp (\sqrt{\tau(p) \log p \log \log p})
$$

McKee [49] gives plausible reasons why the practical performance of ECM may be slightly better than predicted in Table 2. A limited amount of experimental data $[8,45,51]$ supports McKee's analysis. Thus, the table should be taken only as a rough (and slightly conservative) guide.

Since the expected run time is insensitive to changes in B_{1} and B_{2} near the optimal values, it is not important to choose them accurately. This is fortunate, as in practice we do not usually know p in advance. Various strategies have been suggested to overcome this difficulty. Our strategy has been to increase B_{1} as a function of the number of curves t which have been tried, using the fact that for the optimal choice we expect B_{1} / t to be about 330 for 30 -digit factors and to be fairly insensitive to the size of the factor. Given B_{1}, we choose B_{2} so the time for phase 2 is about half that for phase 1 (this choice is not far from optimal). If $B_{1} \simeq 10^{6}$ this gives $B_{2} \simeq 100 B_{1}$.

Once a factor p has been found, we can compute the efficiency E, defined as the ratio of the expected time to find p with optimal parameters to the expected time

Table 2. Expected work for ECM

digits D	$\log _{10} W_{\text {opt }}$	τ
20	7.35	1.677
30	9.57	1.695
40	11.49	1.707
50	13.22	1.716
60	14.80	1.723

with the parameters actually used. For an example in which we started with B_{1} too small but gradually increased it to a value close to optimal, see Table 3.

From the asymptotic behaviour of the functions $\rho(\alpha)$ and $\mu(\alpha, \beta)$, it can be shown that the expected speedup S because of the use of phase 2 (standard continuation), compared to just using phase 1 , is of order $\log \log p$. It is argued in $[8, \S 7]$ that the birthday paradox continuation gives a speedup of order $\log p$ (though only if asymptotically fast polynomial evaluation is used; for our implementations the speedup is of order $\log \log p$). The speedup for the FFT continuation is probably of order $\log p$ at most. Although these speedups are important in practice, they are theoretically insignificant, because they can be absorbed into the $o(1)$ term in Lenstra's result (23). Thus, we expect $\tau(p) \rightarrow 2$ as $p \rightarrow \infty$, independent of whether phase 2 is used. Table 2 shows that the convergence is very slow and that $\tau(p) \simeq 1.7$ for p in the 25 to 45 digit range.

We note a consequence of (24) which may be of cryptographic interest [63]. If t is much larger than C, say $t=100 C$, then the probability of failure is $\exp (-100)$, so we are almost certain to find a factor. On the other hand, if t is much smaller than C, say $t=C / 100$, then $1-\exp (-t / C) \simeq t / C \simeq 0.01$ is small, but not exponentially so. Thus, ECM has a non-negligible chance of finding factors which are much larger than expected. For example, if the work performed is sufficient to find 30 -digit factors with probability 0.5 , then with the same work there is about one chance in 100 of finding a factor of 40 digits and about one chance in 10,000 of finding a factor of 50 digits (we do not attempt to be precise because the probabilities depend to some extent on how the parameters B_{1} and B_{2} are chosen).

5. Some ECM implementations

For future reference, we describe several implementations of ECM. Further details are given in $[13, \S 5]$.
A. Our first implementation was written in 1985, mainly in Pascal, but with some assembler to speed up large-integer multiplications. It used Montgomery's forms (4) and (5) for phase 1, and converted back to Weierstrass normal form (1) for phase 2 , which used the birthday paradox idea. Rational preconditioning [56] was used to speed up polynomial evaluation in phase 2 . The implementation achieved $K_{1}=10 / \log 2$ and $K_{2}=1 / 2$ (recall that, as in $\S 2.2-\S 3.3$, the number of multiplications mod N per curve is about $K_{1} B_{1}+K_{2} B_{3}$). Program A ran on various machines, including Sun 3 and VAX, and found many factors of up to 25 decimal digits [19].
B. A simple Turbo Pascal implementation was written in 1986 for an IBM PC [10]. The implementation of multiple-precision arithmetic is simple but inefficient. Program B is mainly used to generate tables [19], taking into account
algebraic and Aurifeuillian factors [12], and accessing a database of over 230,000 known factors. As a byproduct, program B can produce lists of composites which are used as input to other programs.
C. When a vector processor ${ }^{1}$ became available early in 1988, a Fortran program MVFAC was written (based on program A, with some improvements and simplifications). Vectorization is accomplished by working on a number of elliptic curves in parallel during phase 1. Phase 2 implements the birthday paradox idea as in §3.3. During phase 2 the program works on only one curve at a time, but takes advantage of the vector units during polynomial evaluation. Unlike program A, both phases use Montgomery's form (5), with $K_{1}=11 / \log 2$ and $K_{2}=1$. The initial point is usually chosen to ensure that the group order is divisible by 12 , as described in $\S 2.3$. Multiple-precision arithmetic (with base 2^{26}) in the inner loops is performed using double-precision floating-point operations (flops). INT and DFLOAT operations are used to split a product into high and low-order parts. Operations which are not time-critical, such as input and output, are performed using the MP package [5]. Program C found the factorization of F_{11} (see $\S 7$) and many factors, of size up to 40 decimal digits, needed for $[16,19]$. Keller [37] used program C to find factors up to 39 digits of Cullen numbers.
D. A modification of MVFAC also runs on other machines with Fortran compilers, e.g., Sun 4 workstations. For machines using IEEE floating-point arithmetic, the base must be reduced to 2^{24}. Although the workstations do not have vector units, the vectorized code runs efficiently because of the effect of amortizing loop startup overheads over several curves and keeping most memory accesses in a small working set (and hence in the cache). Program D found the p_{40} factor of F_{10} (see §6).
5.1. The multiplication algorithm. Most of the cost of ECM is in performing multiplications mod N. Our programs all use the classical $O\left(w^{2}\right)$ algorithm to multiply w-bit numbers. Karatsuba's algorithm [38, §4.3.3] or other "fast" algorithms [26, 28] would be preferable for large w. The crossover point depends on details of the implementation. Morain [54, Ch. 5] states that Karatsuba's method is worthwhile for $w \geq 800$ on a 32 -bit workstation. The crossover point on a 64 -bit vector processor is probably slightly larger.

Programs B-D do not take advantage of the special form of Fermat numbers when doing arithmetic mod N. However, the mod operation is implemented efficiently. For programs C and D the operation $X \leftarrow Y \times Z \bmod N$ is coded as a single routine. As Y is multiplied by each digit d_{i} of Z (starting with the most significant digit) and the sum accumulated in X, we also predict a quotient digit q_{i}, multiply N by q_{i}, and subtract. The predicted quotient digit can differ from the correct value by one, because a slightly redundant representation of the intermediate results allows a small error to be corrected at the next step (when working in base B, digits in the range $[0, B]$ are permitted). Also, the result of the operation is only guaranteed to lie in the interval $[0,2 N)$ and to be correct $\bmod N$. With these refinements, the operation $X \leftarrow Y \times Z \bmod N$ can be performed almost as fast as $X \leftarrow Y \times Z$. For w-bit numbers, program C performs $9(w / 26)^{2}+O(w)$ flops per multiplication $\bmod N$; this takes $4(w / 26)^{2}+O(w)$ clock cycles on the VP2200/10.

[^1]If the number N to be factored is a composite divisor of $2^{n} \pm 1$, then the elliptic curve operations can be performed $\bmod 2^{n} \pm 1$ rather than $\bmod N$. At the end of each phase we can compute a GCD with N. Because we can perform the reductions mod $2^{n} \pm 1$ using binary shift and add/subtract operations, which are much faster (for large n) than multiply or divide operations, a significant speedup may be possible. This idea was not implemented in programs B-D, but was used successfully in programs which found factors of F_{13} and F_{16}, see [13, 17].

6. Factorization of F_{10}

When ECM was implemented on the Fujitsu VP100 in March 1988, some of the first numbers which we attempted to factor were the Fermat numbers F_{9}, F_{10}, F_{11} and F_{12}, using variants of program C. We were soon successful with F_{11} (see $\S 7$), but not with the other Fermat numbers, apart from rediscovering known factors. We continued attempts to factor F_{10} by ECM. The phase 1 limit B_{1} was gradually increased. However, there were some constraints on B_{1}. Batch jobs were limited to at most two hours and, to make efficient use of the vector units, we had to complete several curves in that time. The time for t curves done simultaneously was proportional to $t+t_{1 / 2}$, where $t_{1 / 2}$ depended on the startup cost of vector operations.

We ran about 2,000 curves with $B_{1}=60,000$ on the VP100 in the period March 1988 to late 1990. Each run on the VP100 took slightly less than two hours for 63 curves, with $t_{1 / 2} \simeq 10$. The VP100 was upgraded to a VP2200 in 1991, and we ran about 17,360 curves with $B_{1}=200,000$ on the VP2200 in the period August 1991 to August 1995. Each run on the VP2200 took slightly less than two hours for 62 curves, with $t_{1 / 2} \simeq 14$. The improvement in speed over the VP100 was partly due to rewriting the inner loop of program C to reduce memory references and improve the use of vector registers.

In September 1994 we started running program D on one or two 60 Mhz SuperSparc processors. Usually we used one processor for F_{10} and one for F_{12}. In July 1995 six more 60 Mhz SuperSparc processors became available for a limited period. We attempted to factor F_{10} on all eight SuperSparcs using spare computer time. Details are given in Table 3.

In Table 3, F is an estimate of the expected number of times that the factor p_{40} should be found with the given B_{1} and number of curves (see $\S 4.4$). E is an estimate of the efficiency compared to the optimal choice of $B_{1} \simeq 3,400,000$. The programs used the birthday paradox continuation, but the estimates of E and F assume the improved standard continuation with $B_{2}=100 B_{1}$, so they are only approximate (see §4.4). The last row of the table gives totals (for number of curves and F) and weighted means (for B_{1} and E).

The p_{40} factor of F_{10} was found by a run which started on October 14 and finished on October 20, 1995. The run tried 10 curves with $B_{1}=2,000,000$ in about 114 hours of CPU time, 148 hours elapsed wall-clock time.

From the factorizations of $p_{40} \pm 1$ given in $\S 9$, it is easy to prove that p_{40} is prime, and also to see why the Pollard $p \pm 1$ methods did not find p_{40}.

The 252-digit cofactor c_{291} / p_{40} was rigorously proved to be prime by two independent methods (see $\S 9$).
6.1. In retrospect. From column F of Table 3, it appears that we were fortunate to find p_{40} as soon as we did. The probability is about $1-\exp (-0.2434) \simeq 0.22$.

Table 3. ECM runs on F_{10}

B_{1}	curves	F	E	machine(s) and dates
6×10^{4}	2,000	0.0010	0.14	VP100, Mar 1988 - Nov 1990
2×10^{5}	17,360	0.0910	0.42	VP2200, Aug 1991 - Aug 1995
5×10^{5}	700	0.0152	0.69	Sparc \times 2, Sep 1994 - Jul 1995
10^{6}	480	0.0262	0.87	Sparc \times 8, Jul 1995 - Aug 1995
2×10^{6}	900	0.1100	0.98	Sparc \times 8, Aug 1995 - Oct 1995
2.9×10^{5}	21,440	0.2434	0.63	

We know of some other attempts. Bruce Dodson tried about 100 curves with $B_{1}=2 \times 10^{6}$, Peter Montgomery tried about 1,000 curves with $B_{1} \leq 10^{7}$ (mean value unknown), Robert Silverman tried about 500 curves with $B_{1}=10^{6}$, and Samuel Wagstaff tried "a few dozen" curves with $150,000 \leq B_{1} \leq 400,000$. There were probably other attempts of which we are unaware, but the size of the known composite factor of F_{10} (291 decimal digits) reduced the number of attempts. For example, Montgomery's Cray program was restricted to inputs of at most 255 digits, and Wagstaff did not use the Maspar [31] because it would have required a special "size 33" program.

From column E of the table, it is clear that the runs on the VP100 and VP2200 were inefficient. We should have implemented a form of checkpointing so that B_{1} could be increased to at least 10^{6}, allowing us to take more than two hours per set of curves. At the time we did not know that the unknown factor had 40 decimal digits, though by mid- 1995 we were reasonably confident that it had at least 35 digits. Our general strategy was to increase B_{1} gradually, guided by estimates of the optimal B_{1} and the expected number of curves for factors of $30-40$ digits.
6.2. The computational work. Each curve on a 60 Mhz SuperSparc takes about $5.7 \times 10^{-6} B_{1}$ hours of CPU time. If a 60 Mhz SuperSparc is counted as a $60-\mathrm{Mips}$ machine, then our computation took about 240 Mips-years. This is comparable to the 340 Mips-years estimated for sieving to factor F_{9} by SNFS [44]. (SNFS has since been improved, so the 340 Mips-years could now be reduced by an order of magnitude, see $[32, \S 10]$.)

Since the inner loops of programs C and D use floating-point arithmetic, Mflops are a more appropriate measure than Mips. The VP2200/10 is rated at 1250 Mflop (peak performance). If our factorization of F_{10} had been performed entirely on the VP2200, it would have taken about 6 weeks of machine time, or 140 Mflop-years. This is only 75 minutes on a 1 Teraflop machine.

The number of multiplications $(\bmod N)$ is a machine-independent measure of the work to factor N. Each curve takes about $22.9 B_{1}$ such multiplications. Overall, our factorization of F_{10} took 1.4×10^{11} multiplications $(\bmod N)$, where $N=c_{291}$. (Table 2 predicts 3.3×10^{11} with the optimal choice of parameters.) Numbers mod c_{291} were represented with 38 digits and base 2^{26} (on the VP100/VP2200) or with 41 digits and base 2^{24} (on the Sparc), so each multiplication $(\bmod N)$ required more than 10^{4} floating-point operations.
6.3. The group order. The successful elliptic curve and starting point are defined by (5) and (8), with $\sigma=14152267$ (derived from the starting date and time October

14, 15:22:54). Explicitly, we can take the elliptic curve in the form (4) as

$$
b y^{2}=x^{3}+1597447308290318352284957343172858403618 x^{2}+x \bmod p_{40}
$$

This may also be written as $b y^{2}=x(x-k)(x-1 / k) \bmod p_{40}$, where

$$
k=1036822225513707746153523173517778785047 .
$$

b is any quadratic non-residue $\left(\bmod p_{40}\right)$, e.g. $b=5$. The group order is

$$
\begin{aligned}
g & =p_{40}+1-3674872259129499038 \\
& =2^{2} \cdot 3^{2} \cdot 5 \cdot 149 \cdot 163 \cdot 197 \cdot 7187 \cdot 18311 \cdot 123677 \cdot 226133 \cdot 314263 \cdot 4677853 .
\end{aligned}
$$

The probability that a random integer near $g / 12$ has largest prime factor at most 4677853 and second-largest prime factor at most 314263 is about 5.8×10^{-6}. The phase 1 limit for the successful run was $B_{1}=2 \times 10^{6}$, but program D finds p_{40} with B_{1} as small as 314263 if the same curve and starting point are used.

7. Factorization of F_{11}

After the factorization of F_{8} in 1980, no one predicted that F_{11} would be the next Fermat number to be completely factored. Program C, described in §5, was implemented on a Fujitsu VP 100 in March 1988. After failing to find any new factors of F_{9} and F_{10}, we compiled "large" versions of program C, suitable for F_{11} and F_{12}, and checked them by finding the known prime factors of these numbers.

A large version of program C took slightly less than one hour for 20 curves with $B_{1}=16,000$ on the number $c_{606}=F_{11} /(319489 \cdot 974849)$. On May 13, 1988, a 22-decimal digit factor

$$
p_{22}=3560841906445833920513=2^{13} \cdot 7 \cdot 677 \cdot p_{14}+1
$$

was found by phase 2 . We had previously tried 68 curves unsuccessfully with $B_{1} \simeq 15,000$. Overall it took about 2.8×10^{7} multiplications $\left(\bmod c_{606}\right)$ and slightly less than four hours of machine time to find p_{22}. Dividing c_{606} by p_{22} gave a 584 -digit composite number c_{584}.

The next run of program C, on May 17, 1988, found a 21-digit factor

$$
p_{21}=167988556341760475137=2^{14} \cdot 3 \cdot 373 \cdot 67003 \cdot 136752547+1
$$

of c_{584}, again using 20 curves with $B_{1}=16,000$. It was surprising that a larger factor $\left(p_{22}\right)$ had been found first, but because of the probabilistic nature of ECM there is no guarantee that smaller factors will be found before larger ones. Overall, it took about 3.6×10^{7} multiplications $\left(\bmod c_{606}\right.$ or $\left.c_{584}\right)$ and less than five hours of machine time to find both factors by ECM. It would have been feasible to find p_{21} (but not p_{22}) by the Pollard $p-1$ method.

The quotient had 564 digits and it passed a probabilistic primality test [38, Algorithm P$]$. If this test is applied to a composite number, the chance that it incorrectly claims the number is prime is less than $1 / 4$. We ran many independent trials, so we were confident that the quotient was indeed prime and that the factorization of F_{11} was complete. This was verified by Morain, as described in $\S 9$. The complete factorization of F_{11} was announced in [9]:

$$
F_{11}=319489 \cdot 974849 \cdot 167988556341760475137 \cdot 3560841906445833920513 \cdot p_{564} .
$$

8. Additional examples

To show the capabilities of ECM, we give three further examples. Details and other examples are available in [14]. These examples do not necessarily illustrate typical behaviour of ECM.

In December 1995, using program C with $B_{1}=370,000, D=255, e=6$, we found the 40 -digit factor

$$
p_{40}^{\prime}=9409853205696664168149671432955079744397
$$

of $p_{252}-1$, where p_{252} is the largest prime factor of F_{10}. See $\S 9$ for the application to proving primality of p_{252}. The curve is defined as in $\S 2.3$ with $\sigma=48998398$, and the group order is

$$
g=2^{2} \cdot 3 \cdot 5 \cdot 17 \cdot 31^{2} \cdot 53 \cdot 67 \cdot 233 \cdot 739 \cdot 5563 \cdot 7901 \cdot 20201 \cdot 57163 \cdot 309335137
$$

The largest prime factor g_{1} of g is about $836 B_{1}$, which illustrates the power of the birthday paradox continuation. Note that $\operatorname{GCD}\left(2 e, g_{1}-1\right)=12$.

In November 1995, Montgomery [53] found the 47-digit factor

$$
p_{47}=12025702000065183805751513732616276516181800961
$$

of $5^{256}+1$, using $B_{1}=3,000,000$ with his FFT continuation. The group order is $g=2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 23 \cdot 997 \cdot 43237 \cdot 554573 \cdot 659723 \cdot 2220479 \cdot 2459497 \cdot 903335969$.
In April 1997, using a slight modification of program D on a 250 Mhz DEC alpha, we "rediscovered" the factor

$$
p_{49}=7455602825647884208337395736200454918783366342657
$$

of F_{9}. Of course, this factor was already known (see $\S 1$), but it is interesting to see that it could have been found by ECM. We used the equivalent of about 73,000 curves with $B_{1}=10^{7}$; the number of curves predicted as in $\S 4.4$ is about 90,000 . (The predicted optimal value of B_{1} is about 3×10^{7}, but for operational reasons we used a smaller value.)

The "lucky" curve is defined as in $\S 2.3$ with $\sigma=862263446$. The group order is $2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 331 \cdot 1231 \cdot 1289 \cdot 6277 \cdot 68147 \cdot 1296877 \cdot 9304783 \cdot 9859051 \cdot 44275577$.

9. Primality proofs

In [7] we gave primality certificates for the prime factors of F_{5}, \ldots, F_{8}, using the elegant method pioneered by Lucas [47, p. 302], Kraitchik [40, p. 135] and Lehmer [42, p. 330]. To prove p prime by this method, it is necessary to completely factor $p-1$ and find a primitive root $(\bmod p)$. The method is applied recursively to large prime factors of $p-1$.

Similar certificates can be given for the factors p_{49} and p_{99} of F_{9}, using Crandall's factorizations [44] of $p_{49}-1$ and $p_{99}-1$:

$$
\begin{aligned}
p_{49}-1 & =2^{11} \cdot 19 \cdot 47 \cdot 82488781 \cdot 1143290228161321 \cdot 43226490359557706629, \\
p_{99}-1= & 2^{11} \cdot 1129 \cdot 26813 \cdot 40644377 \cdot 17338437577121 \cdot p_{68}, \quad \text { and } \\
& \begin{array}{l}
p_{68}-1=2 \cdot 3^{3} \cdot 13 \cdot 1531 \cdot 173897 \cdot 1746751 \cdot 12088361983 . \\
1392542208042011209 \cdot 3088888502468305782559 .
\end{array}
\end{aligned}
$$

In these three cases the least primitive roots are 3.

For the penultimate factor p_{40} of F_{10}, the least primitive root is 5 , and we have

$$
\begin{aligned}
& p_{40}-1=2^{12} \cdot 3 \cdot 5639 \cdot 8231 \cdot 433639 \cdot 18840862799165386003967 \\
& p_{40}+1=2 \cdot 2887 \cdot 52471477 \cdot 31186157593 \cdot 493177304177011507
\end{aligned}
$$

The same method cannot be applied to prove primality of the largest prime factors of F_{10} and F_{11}, because we have only incomplete factorizations:

$$
\begin{aligned}
p_{252}-1= & 2^{13} \cdot 3 \cdot 13 \cdot 23 \cdot 29 \cdot 6329 \cdot 760347109 . \\
& 211898520832851652018708913943317 \\
& 9409853205696664168149671432955079744397 \cdot c_{158} \\
p_{252}+1= & 2 \cdot 24407 \cdot 507702159469 \cdot c_{235} \\
p_{564}-1= & 2^{13} \cdot 139 \cdot 1847 \cdot 32488628503 \cdot 1847272285831883 . \\
& 92147345984208191 \cdot 23918760924164258488261 \cdot c_{489}, \\
p_{564}+1= & 2 \cdot 3^{2} \cdot 65231833 \cdot c_{555} .
\end{aligned}
$$

We can apply Selfridge's "Cube Root Theorem" [21, Theorem 11] to p_{252}, since $p_{252}-1=F \cdot c_{158}$, where $F>2 \times 10^{93}$ is completely factored, $p_{252}<2 F^{3}+2 F$, and the other conditions of the Cube Root Theorem are easily verified. Thus, p_{252} is prime, and the factorization of F_{10} is complete.

The large factor p_{564} of F_{11} was proved prime by Morain (in June 1988) using a distributed version of his ecpp program [54, p. 13]. We have used the publicly available version of ecpp, which implements the "elliptic curve" method of Atkin and Morain [1], to confirm this result. Version V3.4.1 of ecpp, running on a 60 Mhz SuperSparc, established the primality of p_{564} in 28 hours. It took only one hour to prove p_{252} prime by the same method. Primality "certificates" are available [15]. They can be checked using a separate program xcheckcertif.

10. When to Use ECM, and prospects for F_{12}

When factoring large integers by ECM we do not usually know the size of the factors in advance. Thus, it is impossible to estimate how long ECM will require. In contrast, the running times of the MPQS and GNFS methods can be predicted fairly well, because they depend mainly on the size of the number being factored, and not on the size of the (unknown) factors, see [3, 32, 60]. An important question is how long to spend on ECM before switching to a more predictable method such as MPQS/GNFS. This question is considered in [71, §7], but our approach is different.

Theorem 3 of Vershik [73] says (approximately) that the ratios $\log q / \log p$ of logarithms of neighboring large prime divisors $q, p(q<p)$ of large random integers are asymptotically independent and uniformly distributed in $(0,1)$. Using this theorem (assuming the numbers to be factored behave like random integers) or past experience gained by factoring a class of numbers (such as Cunningham numbers), we can make a rough estimate of the probability P that ECM will factor a given number in one unit of time (say one day of computer time). This estimate should take into account the information that ECM has already spent some (say U_{0}) units of time unsuccessfully searching for a factor. As a simple approximation, we could use the results of $\S 4.4$ to estimate q such that the expected time for ECM to find a factor close to q is U_{0}, and then assume a lower bound q on the unknown factor. This amounts to approximating the function in (24) by a step function.

For example, if we are factoring $N \simeq 10^{100}$ and U_{0} is such that $q \simeq 10^{30}$, then we could assume that the unknown factor p lies in the interval $\left(10^{30}, 10^{50}\right)$ and that $1 / \log _{10} p$ is uniformly distributed in the corresponding interval $(1 / 50,1 / 30)$. The probability P can now be estimated, using the results of $\S 4.4$, if we assume that the parameters B_{1} and B_{2} are chosen optimally to find factors of size close to q. The estimate might, for example, be $P \simeq 1 /\left(c U_{0}\right)$, where $c \simeq 9$.

If the predicted running time of MPQS/GNFS exceeds $1 / P$ units, then it is worthwhile to continue with ECM for a little longer. If ECM is unsuccessful, we repeat the procedure of estimating P. Eventually, either a factor will be found by ECM or the estimate of P will become so small that a switch to MPQS/GNFS is indicated. If a factor p is found by ECM, then the quotient N / p is either prime (so the factorization is complete) or much smaller than the original composite number N, and hence much more easily factored by MPQS/GNFS.

Our approach is reasonable in the limiting case $N \rightarrow \infty$, because the assumption that $1 / \log p$ is uniformly distributed in $(0,1 / \log q)$ gives a positive estimate for P. For example, replacing $N \simeq 10^{100}$ by $N \simeq F_{15}$ in the example above multiplies the constant c by a factor of about $2.5=(1 / 30) /(1 / 30-1 / 50)$.

For the Fermat numbers $F_{n}, 12 \leq n \leq 15$, the predicted probability of success for ECM is low, but the predicted running time of other methods is so large that it is rational to continue trying ECM. There is no practical alternative except the old method of trial division.

Table 4. Second-largest prime factors of F_{n}

n	7	8	9	10	11
ρ_{2}	0.98	0.45	0.82	0.27	0.06

Although Fermat numbers are not random integers, it is interesting to compute $\rho_{2}(\alpha)$ for $\alpha=\log F_{n} / \log p_{2}$, where p_{2} is the second-largest prime factor of F_{n} and $\rho_{2}(\alpha)$ is defined by (11). The values for $n=7, \ldots, 11$ are given in Table 4. For large random integers, we expect $\rho_{2}(\alpha)$ to be uniformly distributed (see $\left.\S 4.1\right)$. We see that F_{11} has a surprisingly small second-largest factor, and F_{7} has a surprisingly large second-largest factor. The second-largest factors of F_{8}, F_{9} and F_{10} are not exceptionally small or large.

The probability that a random integer N close to F_{12} has second-largest prime factor $p_{2}<10^{40}$ is 0.059. F_{12} has five known prime factors (see $\S 1$). Harvey Dubner and the author have tried more than 2200 curves with $B_{1} \geq 10^{6}$, in an attempt to factor F_{12}, without finding more than the five known prime factors. Thus, from Table 2 and (24), we can be reasonably confident that the sixth-smallest prime factor of F_{12} is at least 10^{30}; a smaller factor would have been found with probability greater than 0.99 . An indication of the likely size of the sixth-smallest prime factor can be obtained from Vershik's result [73, Thm. 3], which is paraphrased above.

The complete factorization of F_{12} may have to wait for a significant improvement in integer factorization algorithms or the physical construction of a quantum computer capable of running Shor's algorithm [68].

References

[1] A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), 29-68. Programs available from ftp://ftp.inria.fr/INRIA/ecpp.V3.4.1.tar.Z . MR 93m: 11136
[2] D. J. Bernstein, Detecting perfect powers in essentially linear time, Math. Comp., to appear. Available from ftp://koobera.math.uic.edu/pub/papers/powers.dvi CMP 97:16
[3] H. Boender and H. J. J. te Riele, Factoring integers with large prime variations of the quadratic sieve, Experimental Mathematics, 5 (1996), 257-273. Also Report NM-R9513, Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam, July 1995. ftp://ftp.cwi.nl/pub/CWIreports/NW/NM-R9513.ps.Z MR 97m:11155
[4] W. Bosma and A. K. Lenstra, An implementation of the elliptic curve integer factorization method, Computational Algebra and Number Theory (edited by W. Bosma and A. van der Poorten), Kluwer Academic Publishers, Dordrecht, 1995, 119-136. MR 96d:11134
[5] R. P. Brent, Algorithm 524: MP, a Fortran multiple-precision arithmetic package, ACM Trans. on Mathematical Software 4 (1978), 71-81.
[6] R. P. Brent, An improved Monte Carlo factorization algorithm, BIT 20 (1980), 176-184. MR 82a:10007
[7] R. P. Brent, Succinct proofs of primality for the factors of some Fermat numbers, Math. Comp. 38 (1982), 253-255. MR 82k:10002
[8] R. P. Brent, Some integer factorization algorithms using elliptic curves, Australian Computer Science Communications 8 (1986), 149-163. Also Report CMA-R32-85, Centre for Mathematical Analysis, Australian National University, Canberra, Sept. 1985, 20 pp.
[9] R. P. Brent, Factorization of the eleventh Fermat number (preliminary report), AMS Abstracts 10 (1989), 89T-11-73.
[10] R. P. Brent, Factor: an integer factorization program for the IBM PC, Report TR-CS-89-23, Computer Sciences Laboratory, Australian National Univ., Canberra, Oct. 1989, 7 pp.
[11] R. P. Brent, Parallel algorithms for integer factorisation, Number Theory and Cryptography (edited by J. H. Loxton), Cambridge University Press, 1990. MR 91h:11145
[12] R. P. Brent, On computing factors of cyclotomic polynomials, Math. Comp. 61 (1993), 131149. MR 92m:11131
[13] R. P. Brent, Factorization of the tenth and eleventh Fermat numbers, Report TR-CS-96-02, Computer Sciences Laboratory, Australian National Univ., Canberra, Feb. 1996. ftp://nimbus.anu.edu.au/pub/Brent/rpb161tr.dvi.gz .
[14] R. P. Brent, Large factors found by ECM, Computer Sciences Laboratory, Australian National University, Dec. 1995 (and more recent updates). ftp://nimbus.anu.edu.au/pub/ Brent/champs.ecm .
[15] R. P. Brent, Primality certificates for factors of some Fermat numbers, Computer Sciences Laboratory, Australian National University, Nov. 1995. ftp://nimbus.anu.edu.au/ pub/Brent/F10p252.cer, F11p564.cer .
[16] R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), 857-868. MR 92c:11004
[17] R. P. Brent, R. E. Crandall and K. Dilcher, Two new factors of Fermat numbers, Report TR-CS-97-11, Australian National University, May 1997, 7 pp. ftp://nimbus.anu.edu.au/ pub/Brent/rpb175tr.dvi.gz.
[18] R. P. Brent and J. M. Pollard, Factorization of the eighth Fermat number, Math. Comp. 36 (1981), 627-630. MR 83h:10014
[19] R. P. Brent and H. J. J. te Riele, Factorizations of $a^{n} \pm 1,13 \leq a<100$, Report NM-R9212, Department of Numerical Mathematics, Centrum voor Wiskunde en Informatica, Amsterdam, June 1992. Also (with P. L. Montgomery), updates to the above. ftp://nimbus.anu.edu.au/ pub/Brent/rpb134*.*.gz.
[20] J. Brillhart, Some miscellaneous factorizations, Math. Comp. 17 (1963), 447-450.
[21] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of $b^{n} \pm 1, b=2,3,5,6,7,10,11,12$ up to high powers, 2nd ed., Amer. Math. Soc., Providence, RI, 1988. Also updates to Update 2.9, August 16, 1995. MR 90d:11009
[22] N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. 15 (1951), 25-32. MR 13:362f
[23] D. V. and G. V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization tests, Adv. in Appl. Math. 7 (1986), 385-434. MR 88h:11094
[24] H. Cohen, Elliptic curves, From Number Theory to Physics (edited by M. Waldschmidt, P. Moussa, J.-M. Luck and C. Itzykson), Springer-Verlag, New York, 1992, 212-237. MR 94e:11063
[25] R. E. Crandall, Projects in scientific computation, Springer-Verlag, New York, 1994. MR 95d:65001
[26] R. E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York, 1996. MR 97g:65005
[27] R. Crandall, J. Doenias, C. Norrie, and J. Young, The twenty-second Fermat number is composite, Math. Comp. 64 (1995), 863-868. MR 95f:11104
[28] R. Crandall and B. Fagin, Discrete weighted transforms and large-integer arithmetic, Math. Comp. 62 (1994), 305-324. MR 94c:11123
[29] A. J. C. Cunningham and H. J. Woodall, Factorisation of $y^{n} \mp 1, y=2,3,5,6,7,10,11,12$ up to high powers (n), Hodgson, London, 1925.
[30] K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat., Astronomi och Fysik 22A, 10 (1930), 1-14.
[31] B. Dixon and A. K. Lenstra, Massively parallel elliptic curve factoring, Proc. Eurocrypt '92, Lecture Notes in Computer Science 658, Springer-Verlag, Berlin, 1993, 183-193.
[32] M. Elkenbracht-Huizing, An implementation of the number field sieve, Experimental Mathematics, 5 (1996), 231-253. MR 98a:11182
[33] V. Goncharov, On the field of combinatory analysis, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1944), 3-48; English transl. in Amer. Math. Soc. Transl. (2) 19 (1962), 1-46.
[34] G. B. Gostin, New factors of Fermat numbers, Math. Comp. 64 (1995), 393-395. MR 95c:11151
[35] J. C. Hallyburton and H. Brillhart, Two new factors of Fermat numbers, Math. Comp. 29 (1975), 109-112. Corrigendum, ibid 30 (1976), 198. MR 51:5460; MR 52:13599
[36] W. Keller, Factors of Fermat numbers and large primes of the form $k \cdot 2^{n}+1$, Math. Comp. 41 (1983), 661-673. Also part II, preprint, Universität Hamburg, Sept. 27, 1992 (available from the author). MR 85b:11117
[37] W. Keller, New Cullen primes, Math. Comp. 64 (1995), 1733-1741. MR 95m:11015
[38] D. E. Knuth, The art of computer programming, Volume 2: Seminumerical algorithms (2nd ed.), Addison-Wesley, Menlo Park, CA, 1981. MR 44:3531
[39] D. E. Knuth and L. Trabb Pardo, Analysis of a simple factorization algorithm, Theor. Comp. Sci. 3 (1976), 321-348. MR 58:16485
[40] M. Kraitchik, Théorie des nombres, Tome 2, Gauthier-Villars, Paris, 1926.
[41] F. Landry, Note sur la décomposition du nombre $2^{64}+1$ (Extrait), C. R. Acad. Sci. Paris 91 (1880), 138.
[42] D. H. Lehmer, Tests for primality by the converse of Fermat's theorem, Bull Amer. Math. Soc. 33 (1927), 327-340.
[43] A. K. Lenstra and H. W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993. MR 96m:11116
[44] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factorization of the ninth Fermat number, Math. Comp. 61 (1993), 319-349. MR 93k:11116
[45] A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Proc. Eurocrypt '89, Lecture Notes in Computer Science 434, Springer-Verlag, Berlin, 1990, 355-371. MR 91i:11182
[46] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics (2) 126 (1987), 649-673. MR 89g:11125
$[\rightarrow$ E. Lucas, Théorie des fonctions numériques simplement periodiques, Amer. J. Math. 1 (1878), 184-239 \& 289-321.
[48] J. van de Lune and E. Wattel, On the numerical solution of a differential-difference equation arising in analytic number theory, Math. Comp. 23 (1969), 417-421. MR 40:1050
[49] J. F. McKee, Subtleties in the distribution of the numbers of points on elliptic curves over a finite prime field, J. London Math. Soc., to appear.
[50] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), 243-264. MR 88e:11130
[51] P. L. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph. D. dissertation, Mathematics, University of California at Los Angeles, 1992. ftp://ftp.cwi.nl/ pub/pmontgom/ucladissertation.psl.Z.
[52] P. L. Montgomery, A survey of modern integer factorization algorithms, CWI Quarterly 7 (1994), 337-366. MR 96b:11161
[53] P. L. Montgomery, personal communication by e-mail, November 29, 1995.
[54] F. Morain, Courbes elliptiques et tests de primalité, Ph. D. thesis, Univ. Claude Bernard Lyon I, France, 1990. ftp://ftp.inria.fr/INRIA/publication/Theses/TU-0144.tar.Z. MR 95i:11149
[55] M. A. Morrison and J. Brillhart, A method of factorization and the factorization of F_{7}, Math. Comp. 29 (1975), 183-205. MR 51:8017
[56] M. Paterson and L. Stockmeyer, On the number of nonscalar multiplications necessary to evaluate polynomials, SIAM J. on Computing 2 (1973), 60-66. MR 47:2790
[57] J. M. Pollard, Theorems in factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521-528. MR 50:6992
[58] J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975), 331-334. MR 52:13611
[59] C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology, Proc. Eurocrypt '84, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag, Berlin, 1985, 169-182. MR 87d:11098
[60] C. Pomerance, The number field sieve, Proceedings of Symposia in Applied Mathematics 48, Amer. Math. Soc., Providence, Rhode Island, 1994, 465-480. MR 96c:11143
[61] C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473-1485. MR 97f:11100
[62] H. Riesel, Prime numbers and computer methods for factorization, 2nd edition, Birkhäuser, Boston, 1994. MR 95h:11142
$[1 \rightarrow$ R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Comm. ACM 21 (1978), 120-126. MR 83m:94003
[64] R. M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842-846. MR 16:335d
[65] J. L. Selfridge, Factors of Fermat numbers, MTAC 7 (1953), 274-275.
[66] D. Shanks, Class number, a theory of factorization, and genera, Proc. Symp. Pure Math. 20, American Math. Soc., Providence, R. I., 1971, 415-440. MR 47:4932
[67] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340-357. MR 33:3320
[68] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proc. 35 th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, California, 1994, 124. CMP 98:06
[69] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986. MR 87g:11070
[70] R. D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987), 329-339. MR 88c:11079
[71] R. D. Silverman and S. S. Wagstaff, Jr., A practical analysis of the elliptic curve factoring algorithm, Math. Comp. 61 (1993), 445-462. MR 93k:11117
[72] H. Suyama, Informal preliminary report (8), personal communication, October 1985.
[73] A. M. Vershik, The asymptotic distribution of factorizations of natural numbers into prime divisors, Dokl. Akad. Nauk SSSR 289 (1986), 269-272; English transl. in Soviet Math. Dokl. 34 (1987), 57-61. MR 87i:11115
[74] H. C. Williams, How was F_{6} factored?, Math. Comp. 61 (1993), 463-474. MR 93k:01046
[75] H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comp. 30 (1976), 867-886. MR 54:2574

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

E-mail address: Richard.Brent@comlab.ox.ac.uk

[^0]: Received by the editor February 2, 1996 and, in revised form, May 20, 1997.
 1991 Mathematics Subject Classification. Primary 11Y05, 11B83, 11Y55; Secondary 11-04, 11A51, 11Y11, 11Y16, 14H52, 65Y10, 68Q25.

 Key words and phrases. Computational number theory, Cunningham project, ECM, elliptic curve method, factorization, Fermat number, F_{9}, F_{10}, F_{11}, integer factorization.

[^1]: ${ }^{1}$ Initially a Fujitsu VP100 with 7.5 nsec clock cycle; this machine was upgraded in mid-1991 to a Fujitsu VP2200/10 with 4.0 nsec (later 3.2 nsec) clock cycle and theoretical peak speed of 1,000 Mflop (later $1,250 \mathrm{Mflop}$). Times quoted for the VP2200 are for the faster version.

